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A B S T R A C T   

Statistics can be used to describe data or make inferences about populations using samples. Median values (the 
50th percentile) better represent central tendency of data samples than means (averages), particularly when data 
have extreme values. Errors resulting from use of inferential statistics when using classical hypothesis testing 
include type I (finding a difference between groups when one does not exist) and type II (failure to find a true 
difference) errors. Confounding variables (those that vary with both the dependent variable and independent 
variable) may lead to spurious associations. Classical hypothesis testing and reporting only p-values tends to be 
greatly overused and overemphasized. Confidence intervals provide a range of values for a sample within a 
certain probability (commonly 95%). Confidence intervals can thus describe sizes of likely differences between 
samples, and are much more clinically useful information than only p-values. Before doing a study, the required 
sample size should be calculated to assess study feasibility. Doing so requires specification of the acceptable risk 
of type I and II errors and the size of the lowest clinically meaningful difference between groups.   

African relevance   

• Statistics is an essential tool for analysing data and establishing 
associations and causality.  

• Several studies have reported deficiencies in clinicians' knowledge 
of statistics.  

• A basic knowledge of statistics is necessary for authors from all 
settings, including limited resource settings. 

The International Federation for Emergency Medicine global 
health research primer 

This paper forms part 11 of a series of how to papers, commissioned 
by the International Federation for Emergency Medicine. It describes 
the often-challenging process of managing basic statistics. Although the 
authors describe the concepts eloquently, performing basic statistics 
often require basic statistical training. We have also included additional 
tips and pitfalls that are relevant to emergency medicine researchers. 

Background 

Statistics is an essential tool for analysing data and establishing 
associations and causality. Statistics helps improve the reasonableness 

and accuracy of inferences made in medical research and prevents er
rors and biases. However, statistics contributes to medical care in ways 
beyond research. Understanding statistics helps clinicians comprehend 
and appraise the empirical studies that comprise the evidence behind 
clinical practice [1,2]. Several studies have reported deficiencies in 
clinicians' knowledge of statistics, leading to misinterpretation or ig
noring the statistics in published manuscripts [3,4]. Understanding 
statistical analysis is, therefore, required for both establishing and in
terpreting the evidence used to support clinical practice [5]. Statistics 
can be used to describe data or to make inferences, using data from a 
sample or samples, about a population or differences between popula
tions. This manuscript addresses the fundamental principles of both 
descriptive and inferential statistics, including common statistical tests 
and confounders. 

Types of data 

Data are pieces of information that are collected, for example, 
through a study. Data can be numerical (quantitative) or categorical 
(divided into groups). It is important to recognize the type of data to 
select the best visualization method, an appropriate statistical analy
tical method, and make correct conclusions. 

Quantitative data can be measured objectively. They can be: 
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• Discrete: distinct and separate, non-overlapping values; determined 
by counting. They can only take particular values (e.g. number of 
abortions).  

• Continuous: can be complex numbers; not restricted to arbitrarily 
defined separate values. They can take any value over a continuous 
range. 

Categorical data, however, cannot be measured, but can be ob
served and characterized, objectively or subjectively. They can be:  

• Ordinal: in rank order, but not measured. Examples include scales 
(e.g. Glasgow Coma Scale) and degree of pain severity (e.g. mild, 
moderate, severe; or a Visual Analog Scale score).  

• Nominal: No ranking, just categories. Examples include gender and 
presence or absence of some characteristic (e.g. a risk factor). 

Distributions of data 

Data distribution can be understood more easily when expressed 
graphically. Commonly, the data of interest (e.g. counts) are plotted on 
a graph's vertical (Y) axis, against the data variables (values) on the 
horizontal (X) axis. For example, peoples' blood pressure (Y-axis) can be 
expressed in terms of their ages (X-axis). Data can be distributed in 
countless ways, but certain patterns are common. For example, data can 
be:  

• Equally distributed across all possibilities (called a rectangular, or 
uniform, distribution). One example would be the birth dates of 
people in a population. The Y axis (the “curve”) should approximate 
a straight horizontal line. 

• Clustered around a middle range, with rates decreasing symme
trically as values deviate from the middle value, and the curve 
having a bell shape; this distribution can be called normal, Gaussian, 
or parametric. Many measured variables subject to normal biologic 
variability tend to have this distribution. Examples include height, 
weight, and body temperature. Many of the most commonly used 
statistical tests are designed for data that are normally (para
metrically) distributed. Fig. 1a.  

• Clustered asymmetrically around part of the distribution (skewed 
distribution): an example is household income in the USA; most 
people have incomes within a certain, modest range, but a very few 

have incomes many times greater. These data skew toward the 
lower incomes, an example of leftward, or positive skew. Fig. 1b. 

• Clustered around more than one peak value: an example is the in
cidence of spontaneous pneumothorax by age—most common in 
young adults and the elderly, with lower rates in ages between 
these. Each peak is called a mode; hence this curve is called multi
modal (in this case, with two modes, bimodal). 

Descriptive statistics 

Descriptive statistics is used to describe and summarize features of a 
data set. They help summarize large amounts of data and present them 
logically and comprehensibly. 

Distributions of data depict summaries of the frequency of each 
value of a variable. Frequency distribution is a common way of de
scribing a single variable. Central tendency of a distribution denotes an 
estimate of the “centre” (single most representative value) of a fre
quency distribution. The point estimate is a single value that best es
timates this central tendency. The most common point estimates are 
the:  

• Mean (average): the sum of all values in a sample divided by the 
number of observations  

• Median (the 50th percentile): When data are ranked, half (50%) of 
the values are below the median and the other 50% are above it  

• Mode: The single most common value 

Particularly when data have extreme values, the median is more 
representative than the mean. For example, if almost all patients with a 
certain cancer survive for only a few months, but a few survive for 
many years, the extreme values increase the mean to a number higher 
than most of the patients in the sample. Thus, mean survival would be 
much higher than the median, more characteristic value. 

Statistics can also describe the data range and dispersion. Measures 
include the following:  

• Range: The values ranging from lowest through the highest values  
• Standard deviation (SD): Indicates dispersion (how spread apart 

values are) in a parametric distribution. About 66% of values are 
within 1 SD either side of the mean and 95% of values are within 2 
SD. 

Fig. 1. Example of normal (a) and skewed (b) distribution curves.  
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• Interquartile range (IQR): Values ranging from the 25th through the 
75th percentile in rank. IQR values are particularly useful for data 
not distributed parametrically. 

Inferential statistics 

Classical hypothesis testing 

This is the most commonly used statistical method for finding dif
ferences between groups. Bayesian analysis (see reference [6]), a dif
ferent approach that combines prior, known information (for example, 
from prior studies) with the current data, is beyond the scope of this 
review. 

Clinical studies are often designed to identify differences in a vari
able (any entity that can take on different values, e.g. blood pressure or 
pain score) between two (or more) groups. Classical hypothesis testing 
aims to identify true differences in the variable of interest between 
these groups. True differences are differences unlikely to have resulted 
by random variation between the two (or more) samples representing 
the groups. Classical hypothesis testing is indirect and not intuitive. It 
starts with the ‘null’ hypothesis–that there are no true differences be
tween the groups. However, the ‘alternative’ hypothesis is that true 
differences do exist (for example, that a treated group's blood pressures 
are different from a placebo group and thus the treatment is effica
cious). This is the clinical question the study is designed to address. The 
p-value is the probability of obtaining, solely by chance, a between- 
group difference as large or larger than what was found. If this prob
ability is lower than a pre-determined value designated as alpha (by 
convention, usually 0.05, corresponding to a 5% probability), the null 
hypothesis is rejected and the alternative hypothesis accepted. 
Therefore, alpha can be defined as the predetermined risk of commit
ting an error of obtaining false positive results. 

A type I error, analogous to a false-positive, is finding a difference 
between groups when no difference exists. This risk equals alpha, and 
so is typically, by convention, 5%. 

A Type II error, analogous to a false-negative, is failure to find a true 
difference between groups. The chance of a type II error (called beta) is 
the probability of accepting the null hypothesis when the null hy
pothesis is false. In contrast, statistical power is the probability of 
finding a true difference, of a given size, between groups. A power value 
of 0.80 (80%) is commonly chosen, resulting in a beta value of 20%. 
However, many argue for a smaller beta, to maximize power and 
minimize the chance of falsely negative studies. Table 1 shows the re
lations of true and between-group differences, study findings, and er
rors. 

For a given sample size, alpha and beta are inversely related. For 
example, the lower the p-value, the less likely is a (false-positive) type I 
error, but the more likely is a (false-negative) type II error. The only 
way to decrease both type I and II errors is to increase sample size, 
something that increases precision of estimates in statistics. Clinical 
criteria help inform values for alpha and beta. For example, for highly 
toxic interventions, a low alpha value might be preferred, to establish 
more conclusive evidence of efficacy. For more severe or often under
treated diseases for which treatment is benign (eg, antibiotic treatment 
for chlamydia salpingitis), a low beta, to minimize the chance of 
missing evidence of efficacy, might be preferred. 

Sample size calculation 

The sample size required should be calculated when planning the 
study. It should be based on the study's primary hypothesis and out
come variable. To calculate a sample size, the following are required:  

• Alpha  
• Beta  
• The size of the smallest discernible difference between groups 

(called the effect size; see reference [7]). The effect size ideally is the 
minimum clinically important difference. 

The required sample size increases when any of the following de
creases: 

• Beta (eg, using 0.05 rather than 0.20): when a higher power is de
sirable, the sample size needs to be larger.  

• The effect size (eg, finding a difference of 5 mmHg instead of 
15 mmHg): when looking for a smaller effect size, a larger sample 
size is required. 

Sample sizes can be derived from certain tables (eg, references [8] 
and [9]) or calculated using statistical software. Some methods assume 
parametric data distributions. 

Failure to calculate sample size before the study is done is an extremely 
common mistake. It risks carrying out studies with insufficient sample 
sizes, exposing subjects to the risks and inconveniences of research 
without the counterbalancing possibility of benefit by generating new 
knowledge. 

Common statistical tests 

In inferential statistics, researchers use statistical tests designed to 
determine whether differences observed between samples are due to 
true population differences (eg, due to an intervention) or chance. 
Among the myriad of tests commonly used for between-group differ
ences in hypothesis testing are the following:  

• Student's t-test: Differences in means between 2 groups; assumes 
parametric distribution 

• Wilcoxon rank sum (Mann Whitney U) test: Differences in dis
tributions between 2 groups; similar to the t-test, but does not as
sume a parametric distribution  

• Chi-square test: Differences using qualitative data, comparing at ≥5 
combinations of treatment and outcome. Commonly used to com
pare proportions.  

• Fisher's exact test: Similar to chi-square, but can be used with < 5 
combinations 

• One-way Analysis of Variance (ANOVA): Differences in means be
tween > 2 groups, assumes a parametric distribution and is like a t- 
test for > 2 groups  

• Kruskal Wallis: Non-parametric analogue to one-way ANOVA. Like a 
Wilcoxon rank sum test for > 2 groups. 

Confounding 

Experimental studies are often designed to look for the possible 
effects of changing or controlling some variables (called independent or 

Table 1 
The relations of true and between-group differences, study findings, and errors.      

True Population Between-Group Differences No True Population Between-Group Differences  

Sample shows between-group differences No error (“true positive”) Type I error (“false-positive”), alpha 
Sample shows no between-group differences Type II error (“false-negative”), beta No error (“true negative”) 
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predictor variables) on another variable (called the dependent or out
come variable). For example, one could test whether regionalization of 
trauma care (an independent variable) in city A has affected the trauma 
mortality rate (dependent variable). Confounding variables are those 
that vary with both the dependent variable and independent variable 
and are absent from the causal pathway [10]. The presence of such a 
confounder, unless accounted for, can cause a spurious association. For 
example, suppose the emergency department (ED) in city A is found to 
have a lower mortality rate for major trauma than that in city B. 
However, city B serves many nursing homes, resulting in a much older 
patient group, which is more susceptible to mortality from trauma. Age 
affects both which ED patients are likely to be in and the risk of mor
tality after trauma, and is not involved in a causal pathway (i.e., it does 
not mean that a causal relationship exists between city A and trauma 
mortality). Thus, age is a confounder. If confounders are ignored, the 
study results will falsely suggest a causal relationship. 

Many techniques can adjust or control for potential confounders 
[11,12]. These include randomization, restriction, matching, and stra
tification. These methods are best incorporated into the study design. 
When this is not feasible or practical, researchers need to apply a sta
tistical “correction” method during analysis to adjust for potentially 
confounding effects. Regression is one such core statistical technique. 
Regression can be used to analyse quantitative data (called linear re
gression), qualitative data (logistic regression), or time to an event, 
such as survival data (Cox regression). Logistic regression is used when 
the dependent variable is categorical and linear regression is used when 
the dependent variable is continuous. 

Interpreting and reporting results 

p-Values 
For interpretation of study results, classical hypothesis testing and p- 

values tend to be greatly overused and overemphasized. Their use has 
been criticized for being non-intuitive, and thus prone to mis
interpretation. They also provide too little useful information (see re
ference [13]). A low p-value, indicating differences between groups, 
results from one of the following: true causation (a real cause-and-effect 
relationship), chance (a source of random error), confounding, or bias 
(systematic error resulting from flaws in data sampling or measure
ment). A low p-value is evidence of the absence of chance - only one of 
the factors above. 

Also, p-values, because they say nothing about the size of the dif
ference, provide no information about clinical significance. Point esti
mates and confidence intervals provide much more information, par
ticularly clinically useful information. 

Confidence intervals 

Confidence intervals provide a range of values within a certain 
probability. For example, if sampled repeatedly, the mean or median 
would be within the range of the 95% confidence interval 95% of the 
time. This is often oversimplified to be the range within which the true 
value lies with 95% probability. Confidence intervals can be used to 
describe single group samples or differences between groups. If a be
tween-group confidence interval does not include a zero difference, that 
between-group confidence interval is statistically significant. For ex
ample, if the 95% confidence interval of the difference between the 
effect of anti-hypertensive drug A and drug B on blood pressure was 1 to 
5 mmHg, that difference is statistically significant. That is, the effect of 
drug A differs from that of drug B over the entire range of values in the 
confidence interval; therefore, the likelihood that this observed differ
ence is due to chance is outside the 95% range (and thus is < 5%). 

Confidence intervals give much more clinically useful information 
than p-values and are generally preferred by statisticians and reviewers. 
Confidence intervals show how precise point estimates are. (Larger 
sample sizes result in narrower, more precise, confidence intervals.) 

Confidence intervals also can show how likely differences are to be 
clinically significant (see reference [3]). In the example above, al
though differences are statistically significant, the 95% confidence in
tervals are only 1 to 5 mmHg, which are probably not considered 
clinically significant. In contrast, if the interval was found to be 20 to 
30 mmHg, differences would be considered clinically significant. If the 
interval was 1 to 20 mmHg, the true difference, although statistically 
significant, ranges from clinically insignificant (1 mmHg) to clinically 
significant (20 mmHg). Large confidence intervals, often with clinically 
and sometimes statistically indeterminate results, commonly result 
because sample sizes are too small. 

Tips on this topic   

• Consult a statistician during the design phase of the study. Little can 
be done to fix design problems after the study is completed.  

• Calculate the required sample size and consider study designs that 
minimize sample size. 

• Provide more information than p-values (eg, point estimates, mea
sures of variability) when reporting results, even in abstracts.  

• Use confidence intervals whenever possible.  
• Anticipate possible confounders and adjust for them in study design 

and/or analysis. 

Pitfalls to avoid  

• Overemphasizing the p value; it says nothing about clinical sig
nificance and is widely misinterpreted.  

• Failure to calculate sample size before beginning a study.  
• Failure to define types of variables, which leads to wrong choice of 

statistical tests. 

Additional relevant issues 

Among the statistical topics important in emergency medicine that 
are beyond the scope of this review are the following: 

• Regression, a statistical method that quantifies the strength of as
sociation between an outcome variable (eg, morbidity, mortality) 
and one or more independent variables (eg, age, Acute Physiology 
and Chronic Health Evaluation [APACHE] score). Regression can 
adjust for confounding variables (eg age, which can confound the 
association between variables predicting various poor clinical out
comes).  

• Multiple comparisons: Because every hypothesis tested has a chance 
of being positive solely by chance, the more hypotheses that are 
tested within a single analysis, the greater the chance that at least 
one will be positive by chance. Statistical analyses should be mod
ified to account for multiple comparisons; including subgroup ana
lyses (see reference [7]).  

• Minimizing sample sizes: Minimizing the required sample is high 
priority if resources, including subjects, are limited. Certain study 
designs reduce the required sample size (see1 15 Ways to Reduce 
Sample Size in Clinical Trials). 

Annotated bibliography 

These readings cover relevant topics in greater depth than possible 
in this manuscript. They are worth reading in their entirety. Reference 
number 1, in particular, is a lucid explanation of essential content.  

1. Braitman LE. Confidence intervals assess both clinical significance 
and statistical significance. Ann Intern Med. 1991;114(6):515–517 

1 https://blog.statsols.com/15-ways-to-reduce-sample-size-in-clinical-trials. 
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