Managing soilborne diseases with soil health

Margaret Lloyd, PhD Small Farms Advisor Yolo, Solano, Sacramento

University of California Cooperative Extension

January 22, 2025 EcoFarm Pre-Conference

Principles of Soilborne Disease Management

- 1. Keep inoculum levels low
- 2. Maximize plant health
- 3. Create a less favorable environment

To manage disease is to manage the pathogen, plants and the environment

Integrated Disease Management in Non-chemical and Organic Production

- 1. Sanitation (exclusion/prevention)
- 2. Resistant and tolerant varieties
- 3. Crop rotation with non-host
- 4. Soil treatments
- 5. Destruction of infected crop debris
- 6. Amendment application
- 7. In-season management

Soil health

Definition: the capacity of soil to function as a vital living system... to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health" (Doran and Zeiss, 2000)

Soil health practices typically increase soil microbial communities

- Compost
- Increasing soil organic matter
- Cover crops

Principles of Soil Health

- soil armor/cover
- minimizing soil disturbance
- plant diversity
- continual live plant/root

How are soil health practices targeting soilborne disease issues?

Microbially-mediate disease suppression services

OUTCOMES:

- Disease suppressive soil
- Competition at the rootzone
- Breakdown of plant residue

Soil health practices typically increase soil microbial communities

- Compost
- Cover crops
- Increasing soil organic matter

Soil inhabiting microorganisms

Compost supports microbial diversity and abundance

main attact where a similar where the provide a least of the function of a side of the second of white the second of white the second of the s

Fig. 4. Percent relative abundance of bacterial 16S taxonomic classes identified using the Ribosomal Database Project (RDP) classifier program (Wang et al., 2007) within QIIME. DNA sequence data was derived from 16S rRNA genes amplified from the following treatments: no-treatment control soils (native), soils fumigated with methyl bromide (MeBr), soils fumigated with Telone-C35 (Telone-C35), vermicompost only (vermicompost), and Telone-C35 fumigated soil amended with 50% vermicompost w/w (C35 + 50% VC). Each treatment had *n* = 3.

Fig. 4. Percent relative abundance of bacterial 165 taxonomic classes identified using the Ribosomal Database Project (RDP) classifier program (Wang et al., 2007) within QIIME. DNA sequence data was derived from 165 rRNA genes amplified from the following treatments: no-treatment control soils (native), soils fumigated with methyl bromide (MeBr), soils fumigated with Telone-C35 (Telone-C35), vermicompost only (vermicompost), and Telone-C35 fumigated soil amended with 50% vermicompost w/w (C35 + 50% VC). Each treatment had *n* = 3.

Fig. 4. Percent relative abundance of bacterial 16S taxonomic classes identified using the Ribosomal Database Project (RDP) classifier program (Wang et al., 2007) within QIIME. DNA sequence data was derived from 16S rRNA genes amplified from the following treatments: no-treatment control soils (native), soils fumigated with methyl bromide (MeBr), soils fumigated with Telone-C35 (Telone-C35), vermicompost only (vermicompost), and Telone-C35 fumigated soil amended with 50% vermicompost w/w (C35 + 50% VC). Each treatment had n = 3.

Living roots are restaurants for microbes—exuding carbon at the rhizosphere

Image showing the diversity of root system architecture in prairie plants. © 2012 <u>Nature Education</u> 1995 Conservation Research Institute, Heidi Natura.

How are microbes contributing to disease management?

Mechanism 1: Antagonism/Antibiosis

Mechanism 2: Competition for nutrients

Slide credit: Allison Jack

Mechanisms 3: Induced Systemic Resistance (ISR)

Slide credit: Allison Jack

Mechanism 4: Parasitism

How are microbes contributing to disease management?

Modes of Action

- 1. Antibiotic production
- 2. Competition
- 3. Induced systemic resistance
- 4. Parasitism

Result

Disease suppressive soil

- Protect the rhizosphere
- Breakdown plant residue

Disease suppressive soils are:

Soils in which disease fails to develop despite the presence of a pathogen, a susceptible host plant, and climatic conditions favorable for disease development

Naturally occurring disease suppressive soil

Induced disease suppressive soil

years monoculture wheat

Induced disease suppressive soil is microbially-mediated and transferrable

Suppressive soil

Conducive soil

S: Suppressive soil

C: Conducive soil

CS: Conducive soil + 10% suppressive soil **S50**: Suppressive soil heat-treated at 50C (122F) **S80**: Suppressive soil heat-treated at 80C (176F) Microbiological

Chemical

Enzymatic

	Compost
	Ī
Fungivora nematodes	<mark>-</mark>
Copiotrophic bacteria	
Oligotrophic bacteria	
Total actinomycetes	
Sporogenous bacteria	
Microbial biomass	
Trichoderma spp.	
Fluorescent pseudomonads	
Total tungi	
Total bacteria	
DOC	
NO ₃ -N	
NMR-aromatics	
Sulfate	· · · · · · · · · · · · · · · · · · ·
NH ₄ -N	
OM (%)	
Fe	
Zn	
Mg	
NMR-carboxylic	
NMR-aliphatic	
K	
P	
C-to-N ratio	
pH	
NMR-polysaccharides	
Ca	
NH ₂	
N total	
Bulk density	
EC	
FDA	
Respiration	
2	-1 0 1 2 3

Microbial attributes are the most predictive factor of disease suppressive soil

Suppression Index (SI)

If negative: negative correlation between factor measured and suppression

If positive: positive correlation

If zero: neutral

[Bonanomi et al 2010]

How are microbes contributing to disease management?

Modes of Action

- 1. Antibiotic production
- 2. Competition
- 3. Induced systemic resistance
- 4. Parasitism

Disease suppressive soil

Protect the rhizosphere

Breakdown plant residue

Beneficial soil microbes: Protect THE RHIZOSPHERE

Schematic of a root section showing the structure of the rhizosphere. (Nature, public domain)

Most pathogen infection attempts are NOT successful

Antagonizing pathogens

Reduce access to the rhizosphere

Mechanism 2: Competition for nutrients

Mechanisms 3: Induced Systemic Resistance (ISR)

Slide credit: Allison Jack

Vermicompost also reduces insect damage

www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN

Received: 22 December 2016 Accepted: 16 June 2017 Published online: 24 July 2017

Bottom-up effects on herbivoreinduced plant defences: a case study based on compositional patterns of rhizosphere microbial communities

Emilio Benítez¹, Daniel Paredes¹, Estefanía Rodríguez³, Diana Aldana¹, Mónica González², Rogelio Nogales¹, Mercedes Campos¹ & Beatriz Moreno¹

Below-ground soil microorganisms can modulate above-ground plant-insect interactions. It still needs to be determined whether this is a direct effect of single species or an indirect effect of shifts in soil microbial community assemblages. Evaluation of the soil microbiome as a whole is critical for understanding multi-trophic interactions, including those mediated by volatiles involving plants, herbivorous insects, predators/parasitoids and microorganisms. We implemented a regulated system comprising *Nerium oleander* plants grown in soil initially containing a sterile/non sterile inoculum, herbivore *Aphis nerii* and predator *Chrysoperla carnea*. After aphid attack, plants emitted a characteristic blend of volatiles derived from two biosynthetic classes: fatty acid catabolites and aromatic-derived products. Three aliphatic compounds were mainly detected in plants grown in the inoculated microbial soil, a blend which was preferentially chosen by *C. carnea* adult females. The

Vermicompost also reduces insect damage

Plants amended with VC release more volatiles

How are microbes contributing to disease management?

Modes of Action

Result

- 1. Antibiotic production
- 2. Competition
- 3. Induced systemic resistance
- 4. Parasitism

- Disease suppressive soil
- Protect the rhizosphere

• Accelerate decomposition

Microbial activity

• Accelerates the decomposition of pathogen inoculum—shortens the lifespan

Pathogen inoculum is protected

by plant tissue by melanin by sclerotin

Microsclerotia,

V. dahliae

Multiple mechanisms are keeping inoculum levels below damaging thresholds

Most soilborne pathogens are NOT soil inhabiting organisms

Beneficial soil microbes ARE soil inhabiting microorganisms

As farmers, the goals is to create a hostile environment for non-resident organisms and a favorable environment for beneficial soil microorganisms

- Feed the soil
 - Compost, cover crops, soil organic matter
- Manage the soil
 - Maintain habitat that has air and water
 - For some microbes, minimizing disturbance
 - Continually provide food sources

Integrated Disease Management in Non-chemical and Organic Production

- 1. Sanitation (exclusion/prevention)
- 2. Resistant and tolerant varieties
- 3. Crop rotation with non-host
- 4. Soil treatments
- 5. Destruction of infected crop debris
- 6. Amendment application

7. In-season management

In a field with a disease outbreak, is it a healthy soil that has a disease outbreak or is it an unhealthy soil that has a disease outbreak?

Is it a diseases outbreak or a soil health crisis?

Does this change your management strategy?

What tools do you have to evaluate the soil health?

SOIL HEALTH METRICS

Ansel Olive Klein, Liz Carlisle, Margaret G. Lloyd, Nathan F. Sayre & Timothy M. Bowles (2023) Understanding farmer knowledge of soil and soil management: a case study of 13 organic farms in an agricultural landscape of northern California, Agroecology and Sustainable Food Systems. DOI: 10.1080/21683565.2023.2270451

soil HEALTH METRIC Assess soil biology through evidence of their activity

- Soil biology
- Soil aggregate stability
- Soil infiltration
- Set up a comparison

Ecosystem engineers

Earthworms Ants Termites

Predators

Healthy Soils Demonstration Project

To what extent can cover crops and compost improve compacted soils?

Control area (weedy fallow, mowed)

Cover crops and compost for 3 years

Healthy Soils Demonstration Project

To what extent can cover crops and compost improve compacted soils?

Control area (weedy fallow, mowed)

Cover crops and compost for 3 years

Slakes tests for aggregate stability

Conventional tillage + fallow for 20 years

No till + cover crop for 20 years

Test Another Sample

"Microbe Trap"

To test for health & spread good microbes

THANK YOU

Margaret Lloyd, PhD UCCE Yolo, Solano, Sacramento Organic Agriculture and Small Farms Advisor

mglloyd@ucanr.edu

AKIICLE3 https://doi.org/10.1038/s41477-020-0656-9

(Chóck for updales

Organic management promotes natural pest control through altered plant resistance to insects

Robert Blundell¹, Jennifer E. Schmidt², Alexandria Igwe³, Andrea L. Cheung¹, Rachel L. Vannette³, Amélie C. M. Gaudin and Clare L. Casteel^{01,4}

Reduced insect pest populations found on long-term organic farms have mostly been attributed to increased biodiversity and abundance of beneficial predators, as well as to changes in plant nutrient content. However, the role of plant resistance has largely been ignored. Here, we determine whether host plant resistance mediates decreased pest populations in organic systems and identify potential underpinning mechanisms. We demonstrate that fewer numbers of leafhoppers (*Circulifer tenel-lus*) settle on tomatoes (*Solanum lycopersicum*) grown using organic management as compared to conventional. We present multiple lines of evidence, including rhizosphere soil microbiome sequencing, chemical analysis and transgenic approaches, to demonstrate that changes in leafhopper settling between organically and conventionally grown tomatoes are dependent on salicylic acid accumulation in plants and mediated by rhizosphere microbial communities. These results suggest that organically managed soils and microbial communities may play an unappreciated role in reducing plant attractiveness to pests by increasing plant resistance.

Organic farming is characterized by management practices that promote soil biodiversity and beneficial ecological interactions to offset the need for synthetic inputs such as inorganic fertilizers and biocides. Pest and nutrient management in organic agriculture is largely accomplished through various diversification methods including cover crops crop rotations

resistance, the potential of these interactions to reduce pest damage in agricultural systems remains largely untapped.

In this study, we report that organic management influences pest populations through changes in plant resistance. We explore linkages between insect settling and performance, rhizosphere communities and phytohormones related to plant defence with tomato

eafhopper (Circulifer tenellus), cessing tomato industry²⁰. We ng conventional management 'pests and have lower salicylic es grown using organic manfferences in insect preference in SA accumulation and rhilerstanding how soil manageto what extent it helps create wide growers with new pest ...to demonstrate that changes in leafhopper settling between organically and conventionally grown tomatoes **are dependent on salicylic acid accumulation** in plants and **mediated by rhizosphere microbial communities.**

These results suggest that organically managed soils and microbial communities may play an unappreciated role in reducing plant attractiveness to pests by increasing plant resistance.

Fig. 3 | Relative abundance of bacterial orders associated with changes in

SA. Relative abundance of root-associated bacterial orders from 16S survey

To what extent can cover crops and compost improve compacted soils?

Cover Crops and Compost Significantly Increased Soil Infiltration Rates in 3 Years

Results from a Healthy Soils Demo Project in Davis, CA

Center for Land Based Learning University of California Cooperative Extension

IPM for Soilborne Diseases

Southern Blight Fusarium wilt and others Charcoal rot Verticillium wilt Pythium Phytophthora

Inoculum density and disease incidence

Crop host	<i>V. dahliae</i> (cfu/g soil)	<i>Fusarium oxysporum</i> (cfu/g soil)
Watermelon		166-367 (wilt in 50% of crop)
Strawberry	3-5	
Lettuce	>100-150	
Tomato	2-6	

Ex. 2 cfu/g soil = 3200 cfu in a cubic meter of soil (in an average bulk density soil, 1600kg/cubic meter)

Soil health triangle?

Soil structure

Principles of Soilborne Disease Management

 Keep inoculum levels low
Maximize plant health
Create a less favorable environment

You are managing the fungus and the disease

The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

Jos M. Raaijmakers · Timothy C. Paulitz · Christian Steinberg · Claude Alabouvette · Yvan Moënne-Loccoz

Relationship between inoculum density and disease

Natural attrition rates of inoculum

Residue decomposition rates

Triggering the defense mechanism of plants

Changing the environment for pathogen and disease

Effect of anaerobic soil disinfestation (ASD) and vermicompost on soilborne phytopathogenic agents

USDA

Sarah Strauss and Daniel Kluepfel USDA-ARS Crops Pathology & Genetics Research Davis, CA

Alpha Diversity

Shannon-Index

Soil Microbial Activity in 1 Field

Lloyd, M., D. Kluepfel, and T.R. Gordon. 2016. Evaluation of Four Commercial Compost on Strawberry Plant Productivity and Soil Characteristics in California. *International Journal of Fruit Science*. 16:84-104.

Frequency of Strawberry Root Infections by *Verticillium dahliae* Potting Soil Amended with 20% compost

Vertical bars represent the standard error of the mean. *Significant at $P \leq 0.05$

Lloyd, M., D. Kluepfel, and T.R. Gordon. 2016. Evaluation of Four Commercial Compost on Strawberry Plant Productivity and Soil Characteristics in California. *International Journal of Fruit Science*. 16:84-104.

Fusarium oxysporum

- Host-specific
 - Over 100 different formae speciales described
- Shorter lived survival structures, 3-5 years (chlamydospores)
- Many *Fusarium* spp. are reported to be seedborne.
- Optimal soil temp 86°F+

Chlamydospores

Verticillium dahliae

- Wide host range
- Long lived survival structures, 10+ years (microsclerotia)
- Occasionally seedborne
- Optimal soil temp 70-80°F

Microsclerotia

